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a b s t r a c t

Several interesting problems in neuroscience are of multiscale type, i.e. possess different temporal and

spatial scales that cannot be disregarded. Such characteristics impose severe burden to numerical

simulations since the need to resolve small scale features pushes the computational costs to

unreasonable levels. Classical numerical methods that do not resolve the small scales suffer from

This paper presents an innovative numerical method of multiscale type that ameliorates these

maladies. As an example we consider the case of a cable equation modeling heterogeneous dendrites.

Our method is not only easy to parallelize, but it is also nodally exact, i.e., it matches the values of the

exact solution at every node of the discretization mesh, for a class of problems.

To show the validity of our scheme under different physiological regimes, we describe how the

model behaves whenever the dendrites are thin or long, or the longitudinal conductance is small. We

also consider the case of a large number of synapses and of large or low membrane conductance.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Among the fields of research that computer models can hope
to deliver significant contributions, neuroscience is one of the
most demanding and beautiful. Among the main aspects that
make neuroscience so challenging from the modeling and com-
putational point of view are the multiple temporal and spatial
scales present in most neurological events. Some instances of
what is steadily being considered in present research are
attempts to increase the size of networks of spiking neurons, as
well as incorporation of spatial and heterogeneous aspects of the
neuron physiology. Although the ever increasing capabilities of
computers facilitate such endeavors, a big chunk of the advances
is certainly due to better modeling and computational techniques.

Several facets of multiple scales and neuroscience pervade the
literature, from general discussions on modeling [11,25,38],
to topics related to numerical and computational aspects
[2,3,8,22,27–30,40–42,45,49]. Powerful mathematical tools from
asymptotic analysis, like homogenization, matching asymptotics,
singular perturbation, and dimension reduction techniques are
commonly employed, along with various degrees of neurological
based arguments [4,5,7,17,34,36,39,37,44,46].
ll rights reserved.
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We focus here on the task of deriving an efficient numerical
method for problems of multiscale type. The problem we consider
involves modeling dendrites with an arbitrary distribution of
synapses. In a recent important paper, Meunier and d’Incamps
[37] considered various instances of heterogeneous dendrites
modeled by variants of cable equations, and inquired when the
process of mathematical homogenization was valid. Homogeniza-
tion [9] is a mathematical technique that, given a detailed model
describing all the physical properties of the dendrites, ‘‘replaces’’
it by a homogeneous, simpler to solve, equation. It is like
replacing a heterogeneous dendrite by a homogeneous one that
has similar physical behavior. There is a catch nevertheless; such
substitution is valid only as the number of heterogeneities approach

infinity. That is not the whole story, since the heterogeneity must
have some sort of ‘‘pattern’’, being periodic or random for
instance. Such assumptions are often questionable [3,37].

Motivated by such concerns, we investigate the cable equation
considered in [37], this time from a numerical point of view. Such
a model is fully motivated and derived in [47,48]. Let the voltage
V̂ be the solution of the cable equation
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The reason for choosing the killed-end (Dirichlet) boundary
conditions in (1) is because they are harder to solve numerically
than the sealed-end (Neumann) condition. This is so since, for
problems like the one considered here, killed-end conditions force
abrupt changes in the solution, also known as layers, that are
refractory to computational approximations [43].

Above, V̂ 0 is the initial condition, d denotes the dendrite
diameter in centimeters (cm), cm is the specific membrane
capacitance in farad per square centimeter (F/cm2), s‘ denotes
the longitudinal dendrite specific conductance in siemens per
centimeter (S/cm), sm denotes the membrane specific conduc-
tance in siemens per square centimeter (S/cm2), and ŝex and ŝin

are the excitatory and inhibitory synapse specific conductances,
also in siemens per square centimeter (S/cm2). We assume that
the specific conductances s‘ and sm are constant. The potentials
V̂ , Vex and V in are in millivolt (mV), and both reversal potentials
Vex and V in are constant. Finally, L is the dendrite length in
centimeter (cm). The synapses are modeled by

ŝin
¼
XNi

l ¼ 1

gi
ldx̂

i
l
, ŝex

¼
XNe
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ge
l dx̂

e
l
,

where d
x̂

i
l

are Dirac deltas (or delta ‘‘functions’’) located at the
synapses sites x̂

i
l with strengths gl

i, for l¼1,y,Ni. Similar notation
holds for the excitatory synapses, i.e., the deltas dxe

l
are located the

synapse sites x̂
e
l with strengths gl

e, for l¼1,y,Ne. The definition of
a Dirac delta dx̂

n located at a point x̂
nAð0,LÞ is thatZ L

0
dx̂

ngðx̂Þ dx̂ ¼ gðx̂
n
Þ ð2Þ

for any continuous function g; see [23].
For equations like (1), several different numerically demanding

instances might show up, as big differences in the strengths of the
synapses, large number of synapses at arbitrary locations, and even
a high ratio between the diameter of the dendrite and its length.
Under these circumstances, the computational costs involved in
solving such problems can be unacceptable if a raw numerical
method is to be considered, in particular when considering a large
tree of dendrites where each branch is modeled by (1). The
computational costs grow since any method employed has to
account for the microscale aspects of the dendrite physiology.

In the computational neuroscience literature, discretization of
spatial features of partial differential equations traditionally
employs compartmental models and difference schemes. On the
other hand, finite elements are seldom employed. This is unfortu-
nate since methods based on finite elements are flexible, simple to
implement, computationally efficient, and easier to analyze. For
‘‘nice’’ problems, when the solution has a smooth behavior and
there are no numerical complications, finite elements and finite
differences yield comparable results. However, when standard
schemes do not work well, modern variants of finite elements
come as an viable option of discretization [1,12,13,18,19,26].

One variant is the multiscale finite element method (MsFEM)
[13–16,31,32,35], which we explore here. The idea behind multi-
scale methods to solve heterogeneous systems is that one has to
first solve some local problems and extract some microscale

information. Such information is then upscaled into a homogenized

macroscale problem. Microscale problems depend on refined
information of the model, but has to be solved in small domains,
and parallelization is trivial. Due to this local feature, they are not
expensive to solve. In contrast, the homogenized macroscale
problem is global and has to be solved in the whole domain.
But the microscale data show up averaged, i.e., homogenized, and
the cost of solving the homogenized macroscale problem is
independent of the microscales. The overall result is a method
that is not only accurate, but also computationally cheaper in
terms of costs, see [32] for a careful investigation regarding the
computational efficiency of the method. As a bonus, for steady
problems in one-dimensional domains, the MsFEM yields a
nodally exact solution, i.e., the numerical solution matches the
exact solution at each nodal point (see Section 3 for a proof).

A previous application of the MsFEM include flows in hetero-
geneous media [13–16,31], a class of problem of major interest for
the oil industry. Indeed, oil fields can have the scale of kilometers,
while the oil might flow within porous rocks in the centimeter scale.
This is an instance where a full discretization of all the physical
details is completely out of reach, and techniques based on the
MsFEM offered a new tool to tackle such transport problems.

Another application involves modeling equations posed on
domains with rough boundaries. This problem is of interest since
wrinkles, paradoxically at first sight, can help to minimize the
flow drag over surfaces—think of a golf ball or a shark skin.
However, the characteristic length of the domain and of the
rugosities are of different scales, and refined discretizations
become unreasonably expensive. The MsFEM offers a way to
reduce computational costs [35].

We consider here a thin dendrite with synapses distributed
along its extension. The voltage will jump at the synapses
locations, and since traditional methods must use a huge number
of grid points to capture such small scale behavior, they quickly
become impractical. On the other hand, the MsFEM global
problem uses a fixed, possibly small, number of grid points,
independent of the number of synapses and the thickness of the
dendrite. Between each two consecutive grid points, a subgrid is
created and smaller local problems are solved, possibly in parallel,
and microscale information are uploaded to the global problem
that is solved afterwards. We emphasize that the size of the final
global problem is independent of all physiological parameters.

We now describe briefly the contents of the present paper. In
the next two sections, we present the basics of the traditional and
multiscale finite element method applied to (1). Next, in Section 4
we analyze the behavior of the model under different limit
situations, and display some numerical results. In Section 5, we
briefly consider two extra applications, namely, a Y-shaped
domain and a transient problem. We present our conclusions in
Section 6.
2. Classical finite element method

To facilitate the dissection of the main properties of the
problem under consideration, it is convenient first to define
new coordinates x¼ x̂=L, and rewrite (1) as
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Vð0,tÞ ¼ Vð1,tÞ ¼ 0 for tAð0,þ1Þ,

Vðx,0Þ ¼ V0ðxÞ for xAð0;1Þ, ð3Þ

where Vðx,tÞ ¼ V̂ ðLx,tÞ, V0ðxÞ ¼ V̂ 0ðLxÞ,
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:

We also have

sin ¼
XNi

l ¼ 1

gi
ldxi

l
, sex ¼

XNe

l ¼ 1

ge
l dxe

l
, ð4Þ

where the Dirac deltas are now located at the sites xi
l ¼ x̂

i
l=L, and

xe
l ¼ x̂

e
l =L.

The finite element method is based on a variational formula-

tion, obtained by multiplying both sides of (3) by a sufficiently
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smooth function w that vanishes at 0 and 1 (functions in the
Sobolev space H1

0ð0;1Þ, in mathematical terms). After an integra-
tion by parts in (0,1), it follows thatZ 1

0
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Actually, the problems (5) and (3) are equivalent. Using (4), and
the definition of Dirac deltas (2), it follows that
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As in finite difference schemes, we partition the domain (0,1)
in Nþ1 open intervals (a.k.a. elements) ðx0,x1Þ, ðx1,x2Þ, . . . ,
ðxN�1,xNÞ, ðxN ,xNþ1Þ, defined by the nodes

0¼ x0ox1ox2ox3o � � �oxN oxNþ1 ¼ 1: ð6Þ

In a uniform partition, xk ¼ kh for k¼0,y,Nþ1, where h¼1/(Nþ1).
The next step is to assume that V can be approximated by a

piecewise linear function, i.e.,

Vðx,tÞ � Vhðx,tÞ ¼
XN

k ¼ 1

VkðtÞckðxÞ, ð7Þ

where the unknowns V1, . . . ,VN depend on t only, and ck is a basis

function that is linear within each element, continuous, and such
that

ckðxjÞ ¼ dk,j ¼
1 if k¼ j,

0 if ka j:

(
ð8Þ

See a typical basis function depicted in blue in Fig. 1. Note that
since ck vanishes at all nodes except xk, it follows that
Vhðxj,tÞ ¼ VjðtÞ. For simplicity, assume further that V0ðxÞ ¼

PN
k ¼ 1

V0
k ckðxÞ for some constants V0

1 , . . . ,V0
N .
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Fig. 1. Typical functions in the region (0.2h), for h¼0.125. There are two inhibitory syn

marked with |). The figures were obtained using e large (left) and small (right). The cla

the multiscale basis functions (continuous line) depend on the size of the elements an
To compute the unknowns, we use (5) replacing V by Vh and w

by cj, obtaining the N-dimensional system of ordinary differential
equations (ODEs) given as follows:
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Vjð0Þ ¼ V0
j ð9Þ

for j¼1,y,N. Thus, to find the approximation (7), it suffices to
solve (9). The method just described is commonly called method

of lines, and it approximates the partial differential evolution
equation by a system of ODEs.

Remark. The method of lines described above is used quite often
in finite elements, but there are other possibilities. Less popular
alternatives for the method of lines include time discontinuous
Galerkin method, and Rothe’s method, also known as the hor-

izontal method of lines [33]. In the first case, the finite element
scheme is developed in a space-time domain, using discontinuous
Galerkin techniques to handle the time derivative. Such scheme
hopes to inherit some of the nice properties of the finite element
methods. However, due to its discontinuous nature, the method
turns out cumbersome to develop and implement, and so far
seems more restricted to the legions of finite element fans. In
Rothe’s method, the time discretization is performed before the
domain discretization. It seems that such idea never received
much attention from the scientific community, but there are
recent attempts to use the scheme combined with modern spatial
discretization [20,24]. Both schemes lack the simplicity of the
method of lines, which also profits from the huge literature and
knowledge on numerical schemes for ODEs developed over the
last few decades.

Remark. Although we restrict ourselves to the killed-end bound-
ary conditions, we ought to mention that the implementation of
sealed-end boundary conditions in finite elements is straightfor-
ward, even for general multidimensional domains.
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Remark. Another advantage of finite element formulations, of
particular importance in the present work, is the evaluations of
delta functions. Indeed, since finite elements are based on
formulas that involve integrals like (5), it becomes natural to
compute the action of the Dirac deltas, as defined in (2).

The trouble with the scheme described above is that it fails to
work well under all parameter regimes. For instance if e is
much smaller than the mesh size, then spurious oscillations show
up in a numerical solution that turns out to be unreliable (see for
instance the example considered in Section 4.1, with numerical
results depicted in Fig. 2). The same bad behavior holds for finite
difference schemes as well [6]. This is not a problem of how one
obtains the discretization (finite element or difference), but of
discretizations that fail to capture the small scale behavior of the
solution.
3. The multiscale finite element method (MsFEM)

We propose here an alternative scheme, still based on a finite
element approach, but with modified basis functions. As already
hinted, the idea behind the MsFEM is that the basis functions
should carry all the microscale information, and that shall be
done by solving local problems. We next define the method, and
then get into the details of how to compute the microscale
solutions and upscale the related information.
3.1. The definition of the method

Still partitioning the domain with the mesh (6), we approx-
imate V by the multiscale function Vms

h defined by

Vms
h ðx,tÞ ¼

XN

k ¼ 1

Vms
k ðtÞlkðxÞ: ð10Þ

As before, the unknowns Vms
1 ðtÞ, . . . ,V

ms
N ðtÞ depend on t only. The

new basis functions l1, . . . ,lN are still continuous, but instead of
being linear within each element, they satisfy the local,
elementwise problems

lkðxÞ ¼ 0 if x=2ðxk�1,xkþ1Þ,

�e @
2lk

@x2
þlkþGlk ¼ 0 in ðxk�1,xkÞ and ðxk,xkþ1Þ,

lkðxkÞ ¼ 1 ð11Þ

for kAf1, . . . ,Ng.
In a few particular cases it is possible to compute lk explicitly,

but in general it is necessary to approximate it numerically. In
Fig. 1 we depict two typical basis functions. In both examples, the
support of lk, i.e. the region where lk is nonzero, is assembled by
joining two consecutive elements, (0,0.125) and (0.125,025), and
it contains two inhibitory synapses at x¼0.08 and x¼0.15, and a
excitatory synapse at x¼0.2. The left figure was obtained for large
e, and the right one, for small e.

It is worth pointing out that these basis functions adapt and
capture the local physiological heterogeneities effects of the
dendrites. If there are synapses, the functions have jumps in their
derivatives, as the exact solution of the original problem does. If e
is small, the functions have an exponential profile, just like the
solution of the original problem. That is how the upscaling
process occurs. Note that in classical elements, the functions
would be piecewise linear, regardless of the parameters.

As long as the multiscale basis functions lk are computed,
from (11), the unknowns Vms

1 , . . . ,Vms
N are defined by (compare

with the classical (9)):
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Vms
j ð0Þ ¼ V0ðxjÞ ð12Þ

for j¼1,y,N. With such choice of basis functions, it is now
possible to have an accurate method with the size of the system
(12) independent of e and the number of synapses. The task of
incorporating the microstructure, where the synapses play a
direct role and rise the costs, is concentrated in the computation
of the basis functions. That is the subject of the next subsection.

As we already remarked, a striking property of multiscale
methods is that, for steady state problems in one-dimensional
domains, the numerical solution yields the exact solution at every

node. Such property follows from the very definition of the
method, i.e. from (11) and (12). The proof is quite simple, and
we include the main arguments below. Note that what we want
to prove is that the interpolant of V given by IhV ¼

PN
k ¼ 1 VðxkÞlk
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0
e @IhV
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dx
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for j¼ 1, . . . ,N: ð13Þ

From an integration by parts, (11), and the identity IhV ¼ V at
every node, it follows thatZ xi

xi�1

e @ðIhV�VÞ

@x

@lj

@x
þðIhV�VÞljþGðIhV�VÞlj
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dx¼ 0

at every element ðxi�1,xiÞ. Thus, (13) holds.
Note in the proof above, that we used the fact that lj solves

(11) exactly. In fact, for most multiscale methods, local problems
have to be solved numerically, and it is a matter of discussion in
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the multiscale community how well such problems need to be
resolved.
3.2. Finding the basis functions

To find the functions lk it is necessary to solve (11). Note that
the equations are the same, but posed in different elements. For
simplicity, we deal here only with problem (11) posed on a fixed
element ðxk�1,xkÞ.

First, let xm1 oxm2 oxm3 o � � �oxmNm be the locations of the Nm

synapses lying inside the element ðxk�1,xkÞ. Let the submesh
xk�1 ¼ xm0 oxm1 oxm2 oxm3 o � � �oxmNm oxmNmþ1 ¼ xk, and define for
n¼ 1, . . . ,Nm,
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8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:
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8>>>>>><
>>>>>>:
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n ðx
m
nþ1Þ ¼ 0, fm

n ðx
m
n Þ ¼ 1,

and thus it is a Green’s function (fundamental solution) for the
reaction–diffusion problem above in ðxk�1,xkÞ. Hence, we seek lk

such that its restriction to ðxk�1,xkÞ is given by

lk ¼
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solving the variational form of (11), i.e., cm must be determined
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and

f1 ¼ � � � ¼ fNm�1 ¼ 0, fNm ¼
�

ffiffiffi
e
p

sinh
xm

Nm þ 1
�xm

Nmffiffi
e
p

:

From (14), we conclude that Sm is symmetric and tridiagonal, that
Mm is diagonal, and

Smj�1,j ¼ Smj,j�1 ¼
�

ffiffiffi
e
p

sinh
xm

j
�xm

j�1ffiffi
e
p

for j¼ 2, . . . ,Nm,
Smj,j ¼
ffiffiffi
e
p

cosh
xmj �xmj�1ffiffiffi

e
p

sinh
xmj �xmj�1ffiffiffi

e
p

þ

cosh
xmjþ1�xmjffiffiffi

e
p

sinh
xmjþ1�xmjffiffiffi

e
p

2
6664

3
7775 for j¼ 1, . . . ,Nm,

Mm
i,j ¼

gj

sm
di,j for i,j¼ 1, . . . ,Nm:

In the above definition of Mm, we denote gj as being either gj
i or gj

e,
depending on whether the synapse at xmj is inhibitory or excitatory.

We should point out that the solution given by (15) is actually
exact. This (surprising?) result comes from a cumbersome com-
putation that involves splitting (16) using the subgrid elements,
and integrations by parts in each subelement.

A worth remark regarding the MsFEM concerns its computa-
tional efficiency, as compared with traditional methods. The gain
comes from the general principle that it is cheaper to solve
several small decoupled problems than one single big task, even
when considering serial computation.

Although the construction of the basis functions is fully
decoupled, it introduces an overhead cost. On the bright side,
such construction is performed only once for a given set of
physiological parameters, and it results in a final system of
reduced size.

Consider a discretization of the elliptic, one dendrite case, with
N elements and M subcell elements—in our case M is the number
of synapses per element. So, the traditional method computer
memory grows as O(MN), whereas the MsFEM requires O(MþN). In
terms of operation count, traditional methods behave as O(MN),
and the MsFEM as O(NþMN), if a solver with linear cost is
employed (e.g., a multigrid solver). For solvers that are polynomial
in time, such as direct solvers, then operation count for traditional
methods scales as OðMgNgÞ, but the MsFEM scales as OðNgþNMg

Þ,
where g is the solver operation count rate of growth. Typically,
g¼ 3 for LU decomposition [21]. Note that in the multiple dendrite
case the matrix associated with finite element or difference
discretization has increased bandwidth, but this effect is mitigated
in the MsFEM. The increased bandwidth deteriorates the perfor-
mance of a number of linear algebra methods.

Even though the operation counts for both traditional (finite
elements or differences) and MsFEM are asymptotically similar if
multigrid methods are employed, the number of multigrid itera-
tions depends on the problem and the discretization under
consideration. The use of MsFEM can actually reduce the number
of iterations necessary for convergence [32].

Our comments above hold under the assumption that serial
computers are used. For parallel computations the efficiency
gains are even more striking. We refer again to [32], where a
careful numerical investigation of the performance of the meth-
ods was conducted.
4. Different regimes and their solutions

As pointed out previously, varying the different parameters in
(1) leads to different neurological regimes. In many instances this
causes spurious oscillatory behavior in numerical computations.
To understand the different behaviors that show up, it is useful to
perform an analysis using (3). We consider here only the non-
transient problem.

As an example, consider the case when e is much smaller than
one (e51). This happens for instance when the dendrite is too
thin or too long (d5L2), when the longitudinal conductance is too
big (s‘bsm), or when a combination of the above instances
occur. In such cases numerical difficulties appear, as we shall see.
Another different situation is when there is a huge number of



A.L. Madureira et al. / Neurocomputing 77 (2012) 48–57 53
synapses, or when the membrane conductance is either too large
or too low. In what follows, we present separate formal studies of
these asymptotic limits and show how the classical and multiscale
finite elements perform. To exalt the effects of each separate
situation, we isolate each one of them using parameters that are
not necessarily biologically plausible.

4.1. Long or thin dendrites, or small longitudinal conductance

One situation where numerical difficulties occur is when the
parameter e is too small. In terms of physiology of the dendrites
there are many instances when this can happen, as described
above. However, regardless of the origins, the numerical out-
comes are the same.

To find out how the solution V depends on the parameter e, we
use the method of matching asymptotics, postulating that

VðxÞ � V0ðxÞþeV1ðxÞþe2V2ðxÞþ � � � , ð17Þ

where the functions Vj are to be determined. Formally replacing
(17) in (3), we gather that

V0þGV0þe �
@2V0

@x2
þV1þGV1

� �

þe2 �
@2V1

@x2
þV2þGV2

� �
þ � � � ¼ f in ð0;1Þ:

Collecting the e¼ 0 limit terms, it follows that V0þGV0 ¼ f , i.e.,

smV0þ
XNi

l ¼ 1

gi
ldxi

l
þ
XNe

l ¼ 1

ge
l dxe

l

 !
V0 ¼

XNi

l ¼ 1

gi
ldxi

l
V inþ

XNe

l ¼ 1

ge
l dxe

l
Vex:

After a multiplication by an arbitrary and smooth function f, and
an integration, the above equation becomes

Z 1

0
smV0f dxþ

XNi

l ¼ 1

gi
l V0ðx

i
lÞfðx

i
lÞþ

XNe

l ¼ 1

ge
l V0ðx

e
l Þfðx

e
l Þ

¼ V in
XNi

l ¼ 1

gi
lfðx

i
lÞþVex

XNe

l ¼ 1

ge
l fðx

e
l Þ:

By considering special functions f (actually, a sequence of them),
it is possible to prove that

V0ðxÞ ¼

0 if x=2fxi
1, . . . ,xi

Ni ,x
e
1, . . . ,xe

Ne g,

V in if xAfxi
1, . . . ,xi

Ni g,

Vex if xAfxe
1, . . . ,xe

Ne g:

8>><
>>:

Thus, as e-0, the exact solution V approaches the discontinuous
function V0. Since V itself is continuous, there is an onset of
internal layers at the points of discontinuity. As we remark in the
Introduction, layers are regions with large derivatives, in this case,
regions around the synapses where the voltage ‘‘jumps’’. These
layers cause severe numerical trouble [43].

Such behavior of the exact solution does not come as a
surprise. Indeed the neurological meaning of ‘‘e small’’ is that
there is relatively little diffusion of ions, as occurs when the
dendrite is thin, or the longitudinal conductance is small. In such
instance, the electric ‘‘jumps’’ that take place at the synapses
concentrate in a narrow neighborhood of the synaptic loci.

As a numerical test, depicted in Fig. 2, we pick an example
where five inhibitory (locations marked with � ) and three
excitatory (locations marked with �) synapses are disposed along
the dendrite, V in ¼�10, Vex ¼ 65, gi

l ¼ 4� 10�2, ge
l ¼ 10�2, and

e¼ 10�4. In this example, and all that follow, an ‘‘exact solution’’
(displayed in solid black line) is numerically computed by ‘‘over-
kill’’, using a numerical method with a sufficiently refined mesh.
We solve the same problem using classical (computed nodal
values marked by blue asterisks) and multiscale finite element
methods (computed nodal values marked by red dots), with nine
nodal points in both cases.

We first comment on the exact solution. Observe that it is
close to zero except in a small neighborhood of the synapses. Over
the synapses the value of the exact solution is close to either
V in ¼�10 or Vex ¼ 65. This confirms our theoretical prediction
that, whenever e is small, V should be close to V0. Regarding the
numerical aspects, the classical method yields a solution that is
essentially wrong, where the multiscale solution matches the
exact solution at every node, as predicted by the theory. Sure
enough, if sufficient points are used in the classical scheme, we
would eventually obtain a reasonable approximation. For
instance, for the present example, 129 points are necessary to
bring the relative errors within a range of 10% error at every node.

4.2. Large number of synapses

Suppose that Ni ¼Ne, and let a¼ 1=ð2NiÞ. Assume further that
the synapses are disposed periodically, i.e., the Dirac deltas are
located at the sites xi

l ¼ ð2l�1Þa and xe
l ¼ 2la. In the present case,

the interest is when the synapses are narrowly packed, i.e. a51,
and this situation is tricky to analyze.

The idea is to rewrite the solution of (3) as the minimizer of
the energy

JðVÞþa�1IaðVÞ, ð18Þ

where

JðVÞ ¼
1

2

Z 1

0
esm @V

@x

� �2

þsmV2 dx,

IaðVÞ ¼
a
2

XNi

l ¼ 1

gi
l V

2ðxi
lÞþ

a
2

XNe

l ¼ 1

ge
l V2ðxe

l Þ

�aV in
XNi

l ¼ 1

gi
l Vðx

i
lÞ�aVex

XNe

l ¼ 1

ge
l Vðxe

l Þ:

We assume now some reasonable conditions on gl
i and gl

e, for
instance that gi

l ¼ giðxi
lÞ and ge

l ¼ geðxe
l Þ, where the functions gi and

ge are defined in (0,1) and have at most a finite number of
discontinuities. Then, as a-0 the term Ia concentrates most of
the total energy. Thus lima-0V ¼W0 in a reasonable mathema-
tical sense (i.e., lima-0

R 1
0 ðV�W0Þ

2 dx¼ 0), where W0 minimizes
lima-0Ia, and it turns out that

W0 ¼
V ingi

lþVexge
l

gi
lþge

l

ð19Þ

does the job.
As a numerical test, we consider the case of 350 inhibitory and

excitatory synapses, gi
l ¼ 4� 10�2, ge

l ¼ 10�2, V in ¼�10, and
Vex ¼ 65. In this case, W0¼5, and that is exactly the number
around which the solution oscillates. Numerically, we consider 10
nodal points for both methods. Note in Fig. 3 that the classical
method (blue asterisks) oscillates close to the boundaries, but
delivers a reasonable approximation in the interior of the domain.
The multiscale method (red dots) is nodally exact, as it should be.

4.3. Large or low membrane conductance

In this part, we analyze the effects of the membrane con-
ductance on the solution, i.e., how V behaves as sm-1 or sm-0.
We define the set S¼ fs‘d=ð4L2Þ,gi

1, . . . ,gi
Ni ,g

e
1, . . . ,ge

Ne g, and assume
sm

b max S or sm
5 min S. It turns out that both situations are

somewhat simple.
The former case occur when the membrane is too ‘‘diffusive’’,

allowing the transmembrane free flow of ions. Thus, the V¼0
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limit comes as no surprise, and can be formally obtained by
making sm-1 in the steady state version of (3):

�
s‘d

4L2sm

@2V

@x2
þVþ

sinþsex

sm
V ¼

sinV inþsexVex

sm
in ð0;1Þ,

Vð0Þ ¼ Vð1Þ ¼ 0:

In the latter situation, as sm-0, V satisfies

�
s‘d
4L2

@2V

@x2
þðsinþsexÞV ¼ sinV inþsexVex in ð0;1Þ,

Vð0Þ ¼ Vð1Þ ¼ 0 ð20Þ

reflecting the fact that the cross membrane flow of ions occur
only through the synapses.

We plot both cases in Fig. 4. The figure in the left was obtained
with max S¼ 10�2 and sm ¼ 1, and for the one in the right,
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Fig. 3. Numerical test with a large number of synapses. As predicted by the

theory, the exact solution (solid line) is close to W0 (formula (19)). The classical

method (asterisks) oscillates close to the boundaries, but approximates well the

exact solution in the interior of the domain. The multiscale method (dots) is

nodally exact.
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Fig. 4. Numerical experiments for large (left) and small (right) membrane conductance.

sm decreases, V converges to a piecewise linear function. In both cases, the MsFEM

approximation (asterisks) results reasonable.
min S¼ 10�2, and sm ¼ 10�3. Note that, for the sake of clarity,
the plots have different scales. Indeed, as shown in the left figure,
the magnitude of the solution is small, as predicted by the theory.
It is interesting to observe the good performance (at last!) of the
traditional method. This is simply because in the asymptotic
regime described by (20), the exact solution is a combination of
piecewise linear functions.
5. Further numerical tests

We test here two cases which are prototypes of more inter-
esting practical situations: networks of dendrites, and time
dependent problems. Although the tests presented here clearly
do not intend to fully investigate all computational and
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As sm grows, the exact solution V (solid line) approaches the zero function, and as

(dots) is exact at the nodes, and in the latter case, the classical finite element

0 0.5 1
−20

0

20

40

60

80

x

M
em

br
an

e 
P

ot
en

tia
l (

m
V

)

Main Cable

0 0.5 1
−20

0

20

40

60

80

x

M
em

br
an

e 
P

ot
en

tia
l (

m
V

)

First Branch

0 0.5 1
−20

0

20

40

60

80

x
M

em
br

an
e 

P
ot

en
tia

l (
m

V
)

Second Branch

Fig. 5. Steady state solution in a Y-shaped domain. The classical approximation

(asterisks) suffers again from spurious oscillations, whereas the MsFEM (dots),

although no longer provably nodally exact, yields an excellent approximation to

the exact solution (solid line).
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theoretical aspects of both situations, they indicate that the
MsFEM can handle these more sophisticated examples.

We first consider the steady state version of (1) in a Y-shaped
domain. We added a nodal point at the branching point, and
impose there continuity of voltage and current [47]. Note that
such node is the end point of three different elements, one
belonging to each branch. Thus, the support of the basis function
associated to such node intersects the three branches, and three
equations of the form (11) have to be solved, each with para-
meters coming from the different branches.

The MsFEM is no longer provably nodally exact, but it still
yields an excellent approximation for the exact solution. In Fig. 5,
V in ¼�10, Vex ¼ 65, L¼0.2, d¼0.01, s‘ ¼ 10�3 and sm ¼ 10�2 for
all the branches, and there two excitatory and two inhibitory
synapses in each of the branches. We used a total of 19 nodal
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Fig. 6. Snap shots of solutions for the transient problem (exact solution in solid line). At

suffer from spurious oscillations. At t¼40 s (top right), the MsFEM is accurate, while t

scheme yields a reasonable solution (bottom graphic), although taking more than two
points for each method. There is one nodal value for the classical
method missing: the classical scheme yielded a value below �20,
quite far from the exact solution (black solid line). It is notable
that few points give excellent accuracy, and that allows for great
efficiency when several branches are coupled.

We next consider a transient problem, with the parameters
being the same as in Section 4.1 and tm ¼ 10�2 s, see [10]. After
discretizing in space and obtaining a system of ordinary equations,
we use backward Euler’s method for time discretization, yielding
an implicit scheme. In all tests we consider the time step equal to
10�3. In our first test, we use 33 mesh points for both the classical
and multiscale method. At time t¼10 s (top left of Fig. 6), both
methods exhibit some oscillatory behavior, which is much more
severe for the classical scheme. At t¼40 s, the multiscale scheme is
already quite accurate, while the classical method still oscillates
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(top right of Fig. 6). Doubling the number of nodes for the classical
scheme yields a reasonable solution (bottom of Fig. 6).

In terms of computing time in a personal computer, in the above
tests with the final time equal to 40 s, when both methods use 33
points, it took 0.7 s for the classical method and 0.8 s for the
multiscale method. Considering the classical scheme with 65 points,
it took 1.8 s. Note that the MsFEM is more time consuming than the
classical method, if the same number of nodal points is used. This is
so due to the need to construct the basis functions. However, since
most of the computing time is spent on the time evolution process,
which has similar cost for both methods, the final difference is not
significant. But this is not the whole story, since, to obtain an
equivalent accuracy, the classical method requires more points than
the MsFEM. Refining the mesh in the classical scheme improves
accuracy, but significantly deteriorates its performance. To further
illustrate that point we consider the computing times corresponding
to a given approximation error, for each method.

Given the exact solution V, consider the classical finite element
approximation Vh, a fixed time T, and compute the approximation
error in the maximum norm. The maximum error norm measures
the largest approximation error among the nodes, and is given by

max
k ¼ 1,...,N

9Vðxk,TÞ�Vhðxk,TÞ9:

The same procedure is performed with the multiscale approxima-
tion Vms

h replacing Vh.
Let T¼10 s, tm ¼ 10�2 s, and 2j

þ1 nodes for j¼6,y,9, and keep
all other parameters as in the case of Section 4.1. In Fig. 7, the x-axis
displays the error in the maximum norm, and the y-axis displays the
computing time for the classical (blue asterisks) and multiscale (red
dots) methods. Note that, for a desired tolerance, the multiscale
method computing times are significantly smaller than for the
classical methods since the MsFEM requires less points.
6. Conclusions

Several models in neuroscience are of multiscale type. Classi-
cal numerical methods do not deal with them in a natural way,
but rather require brute force, also known as refined
discretization. This is necessary to capture essential physiological
details. We present here a viable numerical alternative.

Our method cuts computational costs since it solves the
microscale details as a pre-processing task, and that can be done
in parallel. In particular very few mesh points are necessary to
obtain accurate results, and this can be important if involved
problems are considered, for instance for large neuron trees. The
numerical upscaling procedure is done on the fly, and does not
demand any special physiological characteristics. It fits well
neuroscience problems having cost as an issue.

The problem we consider here depends in a nontrivial way on
several parameters. In our case by case analysis, we show how the
solutions rely on them. In practice, such extreme and isolated
situations are unlikely. Biologically plausible examples exhibit actu-
ally a combination of these effects, in an attenuated fashion, but when
using classical numerical approximations that combination might
lead a disastrous net effect. Homogenization techniques can help in
some regimes, but they are reliable only under very specific circum-
stances. On the other hand, our method is always robust with respect
to different scales of the parameters, accurate, and easy to parallelize.

For transient problems, the multiscale method is still very
accurate, but it exhibits some short term oscillatory behavior
under certain conditions, as time starts to evolve. Its performance
is still much better than that of classical methods, but some more
involved space-time multiscale methods are currently under
investigation, see [20] for instance. These new methods should
deliver fast and reliable computations, qualities that are in high
demand for tough computational neuroscience problems.
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